GOAL: Maximize maternal-fetal oxygenation

EFM assesses fetal hypoxemia in real time

Benefits:
- Non-invasive options
- Universal use
- Assess fetal hypoxemia in real time
- Reduces risk of neonatal seizures
- Intermittent auscultation or EFM has comparable results

Limitations include:
- Poor inter- and intra-observer reliability
- Associated with increased rate of OVD and C/S for abnormal FHR patterns or acidosis or both
- Does not reduce the risk of CP or perinatal mortality
 - High false-positive rate for CP: >99%

General EFM Principles

- Fetal oxygenation and intrauterine conditions are influenced by several internal and external factors
- Fetal tolerance to pregnancy, labor, and birth varies with each fetus
- Fetal oxygen reserves decline over the course of labor
- Identifying FHR trends indicative of evolving fetal hypoxemia is key to early intervention
- Administering interventions prior to the development of fetal hypoxemia may limit morbidity or mortality
- Intrauterine resuscitation measures (IURM) are interventions administered to improve oxygen delivery to mother and fetus
- IURM may be administered by various members of the perinatal team based on competency and credentials
- Non-invasive interventions should be administered prior to invasive options when clinically possible
- IURM may have a single or cumulative effect on EFM data; hence one intervention may resolve several abnormal UA and or FHR components
- Most UA and/or FHR patterns may be resolved with 2 or less IURM
- IURM are administered based on underlying pathophysiology
- An EFM Algorithm is a step-by-step procedure that outlines administration of IURM for specific clinical conditions
- There is not one single course of action for any UA/FHR pattern
- Specific individualized clinical conditions and maternal-fetal response will guide selection and sequence of IURMs
- IURM may not resolve all abnormal UA or FHR components or patterns
- When IURMs are unsuccessful, delivery may be indicated

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General UC Characteristics

- **Frequency**: ≤ 5 UCs in 10 minutes, averaged over a 30-minute period
- **Duration**: 50-70 seconds
- **Intensity**: 25-75 mmHg via IUPC
- **Resting Tone**: < 20-25 mmHg via IUPC

General FHR Characteristics

May apply to fetal heart rate accelerations or decelerations

Episodic

- Associated without UCs

Periodic

- Associated with UCs

Peak

- Highest point

Nadir

- Lowest point

Abrupt

- Onset to peak or nadir is less than 30 seconds

Gradual

- Onset to nadir of deceleration is ≥ 30 seconds

Prolonged

- > 2 minutes but < 10 minutes

Intermittent

- Occur with < 50% of UCs in any 20-minute window

Recurrent

- Occur with ≥ 50% of UCs in any 20-minute window
<table>
<thead>
<tr>
<th>Uterine Dysfunction:</th>
<th>Tachysystole</th>
<th>Hypertonus</th>
<th>Tachysystole/Hypertonus-IURM (intrauterine resuscitation measures) for abnormal UA Activity:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>Definition</td>
<td>Pathophysiology</td>
<td>Management</td>
</tr>
</tbody>
</table>
| Uterine Dysfunction: | >5 contractions in 10 minutes, averaged over a 30-minute period; applied to both spontaneous and stimulated labor. Should always be qualified as to the presence or absence of associated FHR decelerations.
- Spontaneous or medication induced | ✓ Uterine Dysfunction:
- Fibroids or prior uterine surgery
- Over Distension: polyhydramnios, multiple gestation, large for gestational age (LGA)
- Hypertonus: Cephalopelvic disproportion (CPD) or occiput posterior (OP) presentation
- Muscular exhaustion (overstimulation or prolonged labor/endogenous vs exogenous) | ✓ Lateral Positioning
- Decompress Vena Cava |
| Tachysystole | ✓ Vena Cava Compression
- Supine in term pregnancy
- Obesity
- Multiple gestation | ✓ Increase IV Fluids
- Maternal hydration improves uterine function
- ↑250cc vs 125cc/hr if not contraindicated |
| Hypertonus | ✓ Dehydration
- NPO status may lead to maternal dehydration, limit uterine muscle function | ✓ Excessive cervical ripening or labor stimulation
- Cervidil or oxytocin-adjust dose | ✓ Cervical Exam
- Assess labor progression |
| | ✓ Medications:
- Cocaine | ✓ Medications:
- Decrease or discontinue labor stimulation agents
- Remove cervical ripening agents
- Administer tocolytic prn | ✓ Medication(s) |
| | ✓ OB Clinical conditions:
- Preterm labor
- Placental Abruption
- Uterine Rupture
- Post Term | ✓ OB Clinical conditions:
- Preterm labor
- Placental Abruption
- Uterine Rupture
- Post Term | ✓ See ACOG Tachysystole Algorithm |
| | ✓ OB Clinical conditions:
- Preterm labor
- Placental Abruption
- Uterine Rupture
- Post Term | | |
| | ✓ OB Clinical conditions:
- Preterm labor
- Placental Abruption
- Uterine Rupture
- Post Term | | |
| | ✓ OB Clinical conditions:
- Preterm labor
- Placental Abruption
- Uterine Rupture
- Post Term | | |
| Acceleration | Visually apparent *abrupt* increase in the FHR; if lasts 10 minutes or >, it is a baseline change
| | ≥ 32 weeks GA: acceleration has a peak of 15 bpm or > above baseline, with a duration of 15 seconds or > but < 2 minutes from onset to return
| | < 32 weeks GA: acceleration has a peak of 10 bpm or > above baseline, with a duration of 10 seconds or > but < 2 minutes from onset to return. | Catecholamine induced cardiac stimulation typically caused by fetal movement and directly influenced by gestational age; reliably predicts the absence of fetal metabolic acidemia at the time of observation
| | o Prolonged acceleration:
| | o Excessive catecholamine exposure
| | o Medications that may decrease occurrence include:
| | o Parenteral narcotics
| | o MgSO4
| | o Betamethasone | *Persistent prolonged accelerations may evolve into a baseline change; continued surveillance is required* |

| Decelerations: | Visually apparent usually symmetrical *gradual* decrease and return of the FHR associated with a uterine contraction
| | o FHR decrease is calculated from the onset to the nadir of the deceleration
| | o *Nadir* of the deceleration occurs at the same time as the peak of the contraction
| | o In most cases, the onset, nadir, and recovery of the deceleration are coincident with the beginning, peak, and ending of the contraction, respectively | Fetal head compression stimulating parasympathetic response leading to cardiac slowing; decel typically found late in labor process but may evolve into variable deceleration if observed early in labor process-if so may be associated with:
| | o CPD, cervical examination, forcep application | ❖ *Continued Surveillance* |

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Pathophysiology</th>
<th>Management</th>
</tr>
</thead>
</table>

| Late | Visually apparent usually symmetrical **gradual** decrease and return of the FHR associated with a uterine contraction
 - FHR decrease is calculated from the onset to the nadir of the deceleration
 - Deceleration is delayed in timing, with the nadir of the deceleration occurring **after** the peak of the contraction
 - In most cases, the onset, nadir, and recovery of the deceleration **occur after** the beginning, peak, and ending of the contraction, respectively | Direct causes may include:
 - Maternal reflex response due to supine positioning
 - Uteroplacental insufficiency (UPI): inadequate amount of oxygen to meet fetal demands leading to cardiac depression; if prolonged may lead to fetal hypoxemia
 - If accelerations or moderate variability absent, hypoxemia may be present | Maternal Supine position etiology:
 - **Lateral Positioning**
 - Decompress Vena Cava
 - Stabilize maternal blood pressure

UPI/Hypoxemia etiology:
 - **RX Fetal Hypoxemia** |
| Variable | Visually **apparent** abrupt decrease in FHR below the baseline calculated from the onset of the deceleration to the beginning of the FHR nadir of less than 30 seconds
 - FHR decrease is > 15 bpm, lasting > 15 seconds, but < 2 minutes
 - When associated with UCs, the onset, nadir, and recovery of the deceleration **commonly vary with successive UCs** | Umbilical cord compression, entanglement, or stretch leading to partial or complete occlusion of the 2 arteries and 1 vein; depending on severity may lead to fetal hypertension, fetal hypotension, +/-hypoxemia
 - More frequent in preterm fetuses
 - If accelerations or moderate variability absent, hypoxemia may be present | Umbilical cord compression etiology:
 - **Lateral Positioning**
 - May releases umbilical cord
 - **Amnioinfusion**
 - IV solution may decompress umbilical cord |
| | | Umbilical cord compression etiology + hypoxemia:
 - **RX Fetal Hypoxemia**
 - **Review ACOG IP FHR Algorithm** |
NICHD Guidelines

- Definitions are primarily developed for visual interpretation of FHR patterns, but should be adaptable to computerized systems of interpretation.
- Definitions should be applied to intrapartum patterns, but also are applicable to antepartum observations.
- Definitions apply to the interpretation of patterns produced from either a direct fetal electrode or external Doppler device detecting the fetal heart events with use of the autocorrelation technique.
- Most common paper speed is 3 cm per minute on the horizontal axis and 30 beats per cm of paper for the FHR on the vertical axis.
- No distinction between STV and LTV as these FHR characteristics are visually assessed as a unit.
- EFM strip must have data of good quality for full and complete assessment.
- Several FHR components are gestational age (GA) dependent, so GA must be considered in the full description of the pattern.
- FHR tracings are evaluated in the context of the maternal medical condition, prior results of fetal assessment, medications, and other factors.
- The biological and clinical significance of FHR patterns is commonly considered to be related to the quantitative variation from the “normal” (Category I) range.
- The individual components of the FHR patterns that are defined do not occur alone and generally evolve over time. Therefore, a full description of an FHR tracing requires a qualitative and quantitative description of: baseline rate, baseline variability, presence of accelerations, periodic or episodic decelerations, and changes or trends over time.
- Laboring women with high-risk conditions (eg, suspected fetal growth restriction, preeclampsia, type I diabetes, or cardiac disease) should be monitored with continuous EFM.

<table>
<thead>
<tr>
<th>FHR 3 Tier Category System</th>
<th>All are required:</th>
<th>Strongly predictive of normal fetal acid-base status at time of observation</th>
<th>Routine Management</th>
<th>Depending on clinical situation, efforts to expeditiously resolve the abnormal FHR pattern may</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category I</td>
<td>Baseline rate: 110-160</td>
<td>Baseline variability: Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Late or variable decels: absent</td>
<td>Early decel or accels: absent or present</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May include any of the following:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absent baseline variability plus:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recurrent late decelerations</td>
<td>Recurrent variable decels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Associated with abnormal fetal acid-base status at time of observation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Routine Management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Customize this test by using your logo if desired and removing the instructions below)

<table>
<thead>
<tr>
<th>Category II</th>
<th>Indeterminate acid-base status at time of observation; FHR components or patterns that may signal evolving hypoxemia in the fetus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Bradycardia</td>
<td>Increased frequency, duration, and/or intensity of decelerations (LD or VD)</td>
</tr>
<tr>
<td>• Sinusoidal pattern</td>
<td>Increase or decrease in baseline rate accompanied by recurrent decelerations</td>
</tr>
<tr>
<td>All other patterns not included in Cat I or Cat III</td>
<td>*Marked or minimal variability accompanied by recurrent decelerations (LD or VD) lasting ≥ 60-90min</td>
</tr>
</tbody>
</table>

References: